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Abstract. In this paper, the behavior of the novel Hysteretic Nonlinear Energy Sink (HNES) in seismic response 

mitigation is investigated. HNES is a modification of a type-I NES device which, in addition to the essential 

nonlinear cubic element, also incorporates a Bouc-Wen type hysteretic element and a negative stiffness element. 

The response reduction of a two-degree-of-freedom model of a shear building is studied against a strong ground 

motion using a HNES, a type-I NES and a traditional Tuned Mass Damper (TMD). For each case, the optimum 

configuration which minimizes the maximum absolute displacement of the top floor is determined using 

Differential Evolution, a robust metaheuristic algorithm. It is shown that HNES performance is vastly superior 

to both NES and TMD, with the additional advantage of insensitivity to changes in structural characteristics. 

1 INTRODUCTION 

The concept of passive vibration control by means of a mass damper was proposed by Watts as early as 1883 

[1] and patented by Frahm [2], who used the term “dynamic vibration absorber”. A classical engineering device 

implementing this concept is the Tuned Mass Damper (TMD), which is attached to a primary vibrating system in 

order to suppress undesirable vibrations. The device consists of a small mass m, a linear spring element k and a 

viscous damper c and its natural frequency is tuned in resonance with the fundamental mode of the primary 

system. When tuned properly, a large amount of the structural vibrating energy is transferred from the primary 

system to the TMD and then dissipated by damping. 
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Figure 1: Schematic representation of a dynamic vibration absorber for an undamped SDoF system as suggested 

by Den Hartog [3]. 
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Since Den Hartog [3] first proposed an optimal design theory for the TMD for an undamped single-degree-

of-freedom (SDoF) structure (Figure 1), the TMD has been employed on a vast array of systems, with 

skyscrapers being among the most interesting ones [4–6]. Apart from buildings, recent studies also include the 

use of TMDs for vibration absorption in seismic or other forms of excitation of bridge structures [7]. 

Even though TMDs are very efficient when tuned properly, they possess certain drawbacks. First, their 

efficacy is subject to errors in the initial estimate of the natural frequency. They are also rather sensitive to 

detuning [6,8], caused by common time-related processes, such as creep, or during a major seismic event due to 

the accumulated inelastic deformations of the structure. Researchers have attempted to mitigate their sensitivity 

by using alternative configurations, e.g., by stacking multiple TMDs together [9] or by introducing active control 

elements, as in Active Mass Dampers (AMDs) [10]. Nevertheless, little progress has been achieved regarding the 

detuning of a passive TMD device. In addition, a large oscillating mass is generally required in order to achieve 

significant vibration reduction, rendering its construction and placement rather difficult in real-life situations. 

In light of the above, the use of essentially nonlinear (i.e., non-linearizable) attachments to the primary 

oscillating system has gained tremendous attention by researchers. When properly designed, these attachments 

act, in essence, as Nonlinear Energy Sinks (NESs), i.e., they passively absorb energies generated by transient 

disturbances in the primary oscillating system to which they are weakly attached [11]. This broadband, one-way 

directed transfer of energy from the primary oscillator to the nonlinear attachment, termed Targeted Energy 

Transfer (TET), is realized in NESs of various designs [12]. Apart from their performance, the most important 

advantage of NESs over TMDs is that the former do not need to be fine-tuned to a particular frequency, as they 

absorb energy at a wider range of frequencies [13]. 

In total, seven types of NESs have been proposed so far. In Type I, II and III, an essentially nonlinear cubic 

spring has been employed with linear (Type I and III) or nonlinear (Type II) damping [14–16]. In Type IV, a 

rotating NES has been introduced coupled to a primary linear oscillator [17,18], whereas Type V and VI designs 

are devoted to strongly nonlinear vibro-impact coupling [11,19,20]. In Type VII, a negative stiffness element is 

employed [21], which is proved to considerably enhance the NES performance for passive energy pumping and 

rapid local energy dissipation. 

The introduction of both rate-independent hysteresis and negative stiffness into a Type I NES has recently 

been investigated in shock mitigation [22]. The resulting NES, termed Hysteretic Nonlinear Energy Sink 

(HNES), has proved to exhibit exceptional robustness and energy dissipation merits. In this paper, three passive 

devices, i.e. a HNES, a type-I NES and a TMD, are optimized for the seismic response mitigation of a two-

degree-of-freedom model of a shear building. The optimum properties of each device which minimize the 

maximum absolute displacement of the top floor are determined using Differential Evolution, a robust 

metaheuristic algorithm. It is shown that the performance of HNES is vastly superior, while it maintains a 

significant performance level even when drastic changes in the structural characteristics occur. 

2 MODEL STRUCTURE 

A two-degree-of-freedom shear building is studied (Figure 2), in seismic mitigation. The structure is 

designed to have natural frequencies similar to those of a typical midrise steel structure and has been investigated 

in detail in [23]. The structural properties are given in Table 1, resulting in first and second natural frequencies of 

1.63 and 4.56 Hz, respectively. The damping in the model is set at 2% in each mode. 
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Figure 2: Structural configurations (a) unprotected structure (b) structure with TMD  

(c) structure with NES (d) structure with HNES 
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k1 6820 N/m 

c1 6.306 Ns/m 

m2 24.2 kg 

k2 8220 N/m 

c2 16.492 Ns/m 

m3 μ(m1+m2) 

μ 5% 

Table 1: Structural properties 

3 DESIGN GROUND MOTION 

The ground acceleration record used in this study belongs to the 1999 Athens earthquake, matched to the 

EC8 Type-1 response spectrum on type B soil, with PGA = 0.36 g and 2% damping. The matching was 

performed based on the wavelets algorithm [24,25] using the SeismoMatch computer software [26]. The original 

and matched spectra are shown in Figure 3. 
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Figure 3: Design ground motion spectrum 

4 HYSTERETIC NONLINEAR ENERGY SINK (HNES) 

The HNES employs a rate-independent hysteretic element, a linear elastic spring of potentially negative 

stiffness, a viscous damper and a cubic nonlinear spring [22]. These are described in brief below. 

4.1 Hysteretic Element 

The Bouc-Wen model, introduced by Bouc [27] and extended by Wen [28], is employed to describe rate-

independent hysteresis. The model utilizes internal (non-measurable) hysteretic variables which follow suitable 

differential equations. In a single-degree-of-freedom system, the hysteretic force is expressed by  

 ( ) ( ) ( ) ( )1BWF t a k x t a k D z t= + −  (1) 

where, x(t) is the time history of the displacement, k>0 is the initial stiffness, D>0 is the yield displacement, and 

z(t) is a dimensionless hysteretic variable which is governed by the differential equation 

 ( )( )( )1 sgn  
n

z D A z x z x −= − +  (2) 

in which n>0 is the exponential parameter, governing the abruptness of transition between pre- and post-yield 

response, and sgn() is the signum function. Parameter a controls the ratio of post to pre-yield stiffness, while the 

dimensionless parameters Α, β and γ control the shape and size of the hysteretic loop [29]. For reasons of model 

consistency, the constraints A=β+γ=1 are imposed which simplify the model without limiting its capabilities 

[30–33]. As a result, z takes values in the range [-1,1], with ±1 meaning full yield in the positive/negative 

direction. 

Based on Eq. (1), the model can be visualized as two springs connected in parallel, i.e. a linear elastic and a 

purely hysteretic spring, with 
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 ( ) ( )el

BWF t a k x t=  (3) 

and 

 ( ) ( ) ( )1h

BWF t a k D z t= − , (4) 

respectively. The combined response is shown in Figure 4. 
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Figure 4: Response of Bouc Wen model under displacement-controlled monotonic loading 

4.2 Negative Stiffness Element 

The idea of employing negative stiffness springs, or ‘anti-springs’, for the absorption of oscillations can be 

traced in aeronautical engineering and the innovative work by Molyneaux [34]. This idea was extended 

significantly by Platus [35]. Apart from pre-compressed springs, physical implementation of negative stiffness 

elements can be achieved by beams, slabs or shells in post-buckled arrangements, inverse pendulum systems, 

etc. Some interesting implementations of such non-linear isolation systems can be found in the works of 

Winterflood et al. [36], Virgin et al. [37], Liu et al. [38], Antoniadis et al. [39], and others. 

Instead of introducing an additional negative stiffness element, a simplest approach has recently been 

proposed [22] which involves the already present linear elastic spring of the Bouc-Wen model. This spring can 

obtain negative stiffness for negative values of parameter a, leading to a true softening behavior which, however, 

is not related to damage of any kind. This approach allows for a seamless investigation of the HNES’ behavior 

for both positive and negative values of a. In this regard, the stiffness of the Bouc-Wen model is indicated as 

kBWNS in Figure 2d, to indicate potentially negative stiffness. 

4.3 Combined response 

The HNES also includes a cubic nonlinear spring and a viscous damper, as in a Type-I NES. The combined 

response is shown in Figure 5. Note the (always) positive initial stiffness, which ensures stability in spite of the 

negative stiffness spring, as well as the cubic nonlinear element which can be used to restrict the stroke of HNES 

within feasible values.  
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Figure 5: Combined response of HNES springs under displacement-controlled monotonic loading 

5 SYSTEM DYNAMICS 

Assuming that ui is the displacement associated with mass mi, the equations of motion take the form: 

 ( ) ( )1 1 1 1 2 2 1 1 1 2 2 1 1 gmu k u k u u c u c u u m u+ − − + − − = − , (5) 

 ( ) ( ) ( )2 2 2 2 1 3 2 2 1 3 3 2 2S gm u k u u F c u u c u u m u+ − − + − − − = − , (6) 
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 ( )3 3 3 3 3 2 3S gm u F c u u m u+ + − = − , (7) 

where, gu  is the ground acceleration and FS3 is the restoring force of the configuration connecting mass m3 to 

the structure. In case of a TMD, 

 ( )3 3 3 2SF k u u= − , (8) 

while in case of a type-I NES 

 ( )
3

3 3 2S NLF k u u= − . (9) 

In case of the proposed HNES configuration, a Bouc-Wen type spring, described by Εqs. (1) and (2), is 

connected in parallel to the cubic nonlinear spring, producing a total restoring force given by:  

 ( ) ( ) ( )
3

3 3 2 3 3 2 31S NLF k u u a k u u a k D z= − + − + − . (10) 

Equations (2), (5)-(7) and (10) can be cast in state-space form with zero initial conditions, as follows 
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 (11), (12) 

The above system can be integrated numerically using e.g. Runge-Kutta 4th - 5th order integrator with 

adaptive time step, or with another appropriate technique. Based on appropriate selection of its parameters, the 

system can produce the response of all cases shown in Figure 2. In particular, for very small values of m3 one 

obtains the response of the unprotected structure; for kNL=0 and a=1 the cubic non-linear element as well as the 

hysteretic spring of Bouc-Wen are disabled, producing the response of a TMD; and, finally, for k3=0 the whole 

Bouc-Wen element is disabled, producing a type-I NES. By allowing these parameter values in the optimization 

procedure, the proposed HNES configuration is therefore able of producing a proper superset of responses with 

regard to both the TMD and type-I NES. It will be proved that the optimized HNES configuration indeed 

exhibits superior performance, with the additional advantage of insensitivity with respect to changes in the 

structural characteristics. 

6 STATEMENT OF THE OPTIMIZATION PROBLEM 

In this work, the maximum absolute displacement of the top floor is used as objective function. Thus, the 

optimization problem is to minimize max(abs(u2(t))) subject to the side constraints of the active design variables 

given in Table 2. In order to reduce the complexity of the optimization problem, the following parameters are 

known to have little sensitivity and were therefore fixed to reasonable values: n=2 (smooth transition from 

elastic to post-elastic branch), β=γ=0.5 (unloading branches are straight lines). 
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1 c3 [Ns/m] 0 20 c3 [Ns/m] 0 20 c3 [Ns/m] 0 5 

2 k3 [N/m] 0 1000 kNL [N/m3] 0 10000 k3 [N/m] 0 1000 

3       D [m] 0.01 1 

4       a [-] -1 1 

5       kNL [N/m3] 0 10000 

Table 2: Side constraints of design variables 

7 OPTIMIZATION METHOD 

The optimum parameter values for all cases (Figure 2b - Figure 2c) has been determined by a robust 

metaheuristic algorithm called Differential Evolution (DE). The algorithm was introduced by Storn and Price 

[40] and an early version was initially conceived under the term “Genetic Annealing” [41]. In classic DE, usually 

denoted “rand/1/bin”, a population of P individuals is randomly dispersed within the design space, as 
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 (13) 

where Px,g = array of P vectors (solutions); xi,g = ND-dimensional vector representing a candidate solution; 

gmax = maximum number of generations; i = index for vectors, g = index for generations, j = index for design 

variables; and the parentheses indicate an array. At each generation g, a mutated population Pv,g is formed based 

on the current population Px,g , as 

 ( ), 0, 1, 2,i g r g r g r gF= + −v x x x  (14) 

where, r0, r1, and r2 are mutually exclusive random integers in {1, 2, …, P}, which are also different from 

index i; xr0,g = base vector; and F = a scalar parameter. After using Eq. (14), design variables are reset to their 

respective bounds in case a mutated solution moves out of the initial design space. Next, a trial population Pu,g is 

formed, consisting of individuals created from the parent and mutated populations, as 

 ( )
( ), ,

, , ,

, ,

,  if  or 

,  otherwise

j i g r rand

i g j i g

j i g

v r C j j
u

x

 =
= = 


u  (15) 

where, jrand = a random index in {1, 2, …, P} that ensures that at least one design variable will originate from 

the mutant vector vi,g; and Cr = a scalar parameter in the range [0,1]. The final step of the algorithm is a greedy 

selection criterion, which for minimization problems is expressed as 
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The above-described classic DE implementation usually demonstrates stronger exploration capability and 

thus is more suitable for solving multimodal problems [40]. Following recommendations in [41], F = 0.5 while a 

high value of Cr = 0.9 is expected to perform well with non-separable functions. The population size is set as P = 

50 for all problems. 

8 RESULTS AND DISCUSSION 

The best results out of 10 independent runs with different random seeds (per case) are summarized in Table 

3. Regarding HNES, it is immediately noted that the optimization process was guided to the removal of the 

viscous damper (c3=0). In addition, the lower bound of D was selected (0.01), which means that a small yield 

force Fy=k3D was proved to be beneficial. 

The objective values (i.e., max(abs(u2))) are summarized in Table 4. Compared to the response of the 

unprotected structure, it is shown that HNES achieves a reduction of 65.49%, i.e. more than double the reduction 

achieved with NES (30.71%) and almost three times the reduction achieved with TMD (23.63%). Next, a 

stiffness reduction is imposed in both k1 and k2, to account for potential deterioration effects during the life cycle 

of the structure. Keeping the optimum parameters of Table 3, the calculated objective values indicate that HNES 

maintains a significant level or performance, e.g. it still achieves a 29.13% reduction even if the column 

stiffnesses are reduced by half. The observed behavior is vastly superior to both NES and certainly TMD. 
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 TMD (kNL=0, a=1) Type-I NES (k3=0) HNES 

# 
Design 

variable 

Optimum 

value 

Design 

variable 

Optimum 

value 

Design 

variable 

Optimum 

value 

1 c3 [Ns/m] 0.591 c3 [Ns/m] 1.076 c3 [Ns/m] 0.000 

2 k3 [N/m] 268.357 kNL [N/m3] 4115.186 k3 [N/m] 349.475 

3     D [m] 0.010 

4     a [-] -0.863 

5     kNL [N/m3] 712.164 

Table 3: Optimum parameter values 

% stiffness 

reduction 

in k1, k2 

Unprotected 

structure 
TMD (kNL=0, a=1) Type-I NES (k3=0) HNES 

Objective 

value [m] 

Objective 

value [m] 
% reduction 

Objective 

value [m] 
% reduction 

Objective 

value [m] 
% reduction 

0% 0.125607 0.095928 -23.63% 0.087035 -30.71% 0.043349 -65.49% 

10% 0.129114 0.114994 -10.94% 0.103143 -20.11% 0.056351 -56.36% 

20% 0.139076 0.136429 -1.90% 0.122650 -11.81% 0.064349 -53.73% 

30% 0.151392 0.149725 -1.10% 0.133370 -11.90% 0.086992 -42.54% 

40% 0.164471 0.148314 -9.82% 0.124886 -24.07% 0.115198 -29.96% 

50% 0.157517 0.157275 -0.15% 0.137996 -12.39% 0.111632 -29.13% 

Table 4: Objective values and % reduction with respect to the unprotected structure 

 

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25 30 35 40

u
1
≡

x 1
[m

]

Time [s]

Unprotected

TMD

NES

HNES

(a)

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25 30 35 40

u
2
≡

x 3
[m

]

Time [s]

Unprotected

TMD

NES

HNES

(b)

 

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40

to
p

 f
lo

o
r 

a
c
c
e
le

ra
ti

o
n

 [
m

/s
2
]

Time [s]

Unprotected

TMD

NES

HNES

(c)

-300

-200

-100

0

100

200

300

-1.00 -0.50 0.00 0.50 1.00

F
S

3
[N

]

m3 stroke [m]

TMD

NES

HNES

(d)

 
Figure 6: Response of model structure (a) bottom floor displacement u1 (b) top floor displacement u2  

(c) top floor acceleration 
2u (c) FS3 vs m3 stroke  

The response of the model structure under all alternative protection systems is shown in Figure 6. The 

following can be observed: 

• The displacements are significantly reduced using the proposed HNES configuration, in terms of both the 

maximum absolute value and overall (Figure 6a,b). The reduction factors are as follows: max(abs(u1)) 

45.17%; max(abs(u2)) 65.49%; RMS(u1) 78.36%; and RMS(u2) 81.70%. 

• The acceleration of the top floor is comparable to the unprotected structure but only in the beginning of the 

event (Figure 6c). Then, the acceleration is diminished with HNES, with a reduction factor for RMS(
2u ) 

equal to 61.55%. 

• The stroke requirements with HNES are increased but not unreasonable (Figure 6d). If, however, a certain 

maximum level needs to be maintained, this can be taken into account in the optimization process as a 
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constraint. 

• The hysteretic loops of HNES are very shallow due to the small yield force. 

• The HNES response is almost completely displaced due to the negative stiffness spring. Restoration to the 

initial position is required after the event. 

9 CONCLUSIONS 

In conclusion, the use of HNES for seismic response mitigation is very promising and certainly deserves 

attention. The following can be explored (indicatively) in future research: 

• The use of other objective functions in optimization e.g. RMS of displacements, top floor acceleration, etc. 

• The behavior of HNES when the structure is subjected to another design ground motion as compared to the 

one used for optimization. 

• Real-life implementations of such a device. 
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